Comparison of periprosthetic tissue digestion methods for ultra-high molecular weight polyethylene wear debris extraction.
نویسندگان
چکیده
There is considerable interest in characterization of wear debris from polyethylene (UHMWPE) bearing components used in total joint replacement. To isolate UHMWPE wear debris, tissue samples must be excised from regions adjacent to revised UHMWPE implant components, followed by exposure to one of many available tissue digestion methods. Numerous studies demonstrate successful digestion, but the relative efficiency of each method is not clear. The purpose of this study was to evaluate a variety of conditions for tissue digestion to provide a quantitative comparison of methods. Porcine and human hip tissues were exposed for 24 h to basic, acidic or enzymatic agents, filtered and digestion efficiency calculated based on the percentage of initial to final tissue weight. Of the conditions tested, 5 M NaOH, 5 M KOH, 15 M KOH or 15.8 M HNO(3) yielded the most complete porcine hip tissue digestion (<1% residual tissue weight; p < 0.05). Proteinase K and Liberase Blendzyme 3 did not effectively digest tissue in a 24 h period. Similar to results from the porcine dataset, human tissues digestion was most efficient using 5 M NaOH, 5 M KOH or 15.8 M HNO(3) (<1% residual tissue weight; p < 0.05). To verify that particle surface modifications did not occur after prolonged reagent exposure, GUR415 and Ceridust 3715 particles were immersed in each solution for 24 h. Overall, this study provides a framework for thorough and efficient digestive methods for UHMWPE wear debris extraction.
منابع مشابه
Anti-oxidation Treatment of Ultra High Molecular Weight Polyethylene Components to Decrease Periprosthetic Osteolysis: Evaluation of Osteolytic and Osteogenic Properties of Wear Debris Particles in a Murine Calvaria Model
Wear debris-induced osteolysis remains the greatest limitation of long-term success for total joint replacements with ultra-high molecular weight polyethylene (UHMWPE) bearings. To address oxidative degradation post-gamma irradiation, manufacturers are investigating the incorporation of antioxidants into PE resins. Similarly, larger molecular weight monomers have been developed to increase cros...
متن کاملBone-Implant Interface Biology ―― Foreign Body Reaction and Periprosthetic Osteolysis in Artificial Hip Joints――
Aseptic loosening and periprosthetic osteolysis are major problems in artificial hip joint surgery,for which a solution has yet to be found. Biological host response to wear debris combined with cyclic mechanical loading onto the bone bed around hip prosthetic implants has been considered as mechanism responsible for implant-mediated periprosthetic osteolysis. Any type of artificial joint glidi...
متن کاملPolyethylene particles from a hip simulator cause (45)Ca release from cultured bone.
Periprosthetic osteolysis is a dominant factor in the success or failure of total hip prostheses. Polyethylene wear debris has been implicated in the process of bone resorption and subsequent implant loosening. The present study is the first to examine the effect of ultra high molecular weight polyethylene (UHMWPE) wear debris produced by a hip simulator on calvarial bone resorption in vitro. (...
متن کاملInvestigation of Wear Behavior of Biopolymers for Total Knee Replacements Through Invitro Experimentation
The average life span of knee prosthesis used in Total Knee Replacement (TKR) is approximately 10 to 15 years. Literature indicates that the reasons for implant failures include wear, infection, instability, and stiffness. However, the majority of failures are due to wear and tear of the prosthesis. The most common biopolymer used in TKR is Ultra High Molecular Weight Polyethylene (UHMWPE). Pr...
متن کاملSimple colorimetric methods for determination of sub-milligram amounts of ultra-high molecular weight polyethylene wear particles.
New colorimetric methods are described for determination of sub-milligram amounts of ultra-high molecular weight polyethylene (UHMWPE) wear particles. These methods are based on the irreversible binding of the fluorescein-conjugated bovine serum albumin or the hydrophobic dye Oil Red O to wear particles. UHMWPE particles bind both substances from their solutions and thus decrease the absorbance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part B, Applied biomaterials
دوره 91 1 شماره
صفحات -
تاریخ انتشار 2009